Pytest with Eric

Learn to write production level Python Unit Tests with Pytest

Picture this, you eagerly type pytest into your terminal anticipating a smooth run of your tests but instead receive the frustrating, “pytest command not found” message.

Have you experienced this before?

This error, though seemingly straightforward, can be a gateway to a myriad of underlying issues related to environment setup, package installation, and system configurations, bringing your testing to a standstill.

Well, you’re in luck.

There are some common reasons why this happens and mostly it has to do with Pytest installation or misconfigured virtual environments and simple to fix.

Read more »

Testing plays a pivotal role in ensuring code reliability and stability.

However, what about when your code relies on external services, APIs, databases or intricate libraries?

How do you easily test those features in a contained environment?

This is where mocking comes into play. It gives you the ability to simulate different scenarios, ensuring your code works as expected.

Now what if you wanted to simulate multiple values being returned by your mock object? Maybe different API endpoints, responses, variables or datasets?

Do you have to create a new mock object for each value?

Read more »

Creating a dynamic and efficient testing environment is pivotal to seamless execution of test cases.

Fixtures, a key feature in Pytest, play a crucial role in managing the setup and teardown of various test resources, from class initialization to database and network connections.

They help solve repetitive tasks, such as handling input data or establishing database connections.

Typically, developers explicitly pass fixtures into unit tests, enabling precise control over which fixtures are executed.

However, imagine a scenario where a fixture automatically executes for all test functions, eliminating the need for explicit fixture passing…

Read more »

Temporary directories play a vital role in testing by providing a controlled environment to execute and validate code.

However, managing temp directories and files can be challenging and often complex.

How do you handle issues like directory cleanup and portability across different platforms? What about ensuring isolation between your tests?

What if multiple tests need to operate on the same directories?

Read more »

As a software developer, you likely manage many tests. Especially as your code grows. It gets harder to track and organize these tests.

The real challenge isn’t just running the tests, but ensuring they adapt to changes during the project lifecycle and become easier to manage.

So how do you manage so many tests and choose what to run? How do you ensure tests are run in the right order?

How do you skip tests under certain conditions? How do you run tests on specific platforms? How do you run tests with different data sets?

Read more »

Fixtures are one of Pytest’s most powerful features.

They help manage setup and teardown of test resources such as database connections, network connections, initializing classes and so on.

But have you ever experienced the dreaded “Pytest fixture not found” error?

You’ve checked your code and tests a million times but cannot figure it out? The result - Your testing comes to a complete halt!

Read more »

Writing code without tests it is like delivering a half-baked cake.

Mocking plays a crucial role in unit testing by isolating code under test from its dependencies, such as external services, APIs, or complex libraries.

While mocking is super helpful, how do you ensure that the code under test interacts correctly with all its dependencies? After all, it’s not possible to mock each and every function. Not only would it be messy, but incredibly hard to maintain and debug.

Read more »

Testing is a pivotal pillar in the expansive world of Python development, ensuring code robustness, reliability, compatibility and peace of mind.

One key aspect of testing is “mocking” — a technique allowing parts of a system to be replaced with controlled stand-ins, enhancing test isolation and control.

In this context, you may have come across tools like the ‘mocker’ fixture, that makes mocking in Pytest easy.

However, have you encountered the common pitfall fixture ‘mocker’ not found error?

Read more »

Have you ever been stuck debugging a unit test, only to be overwhelmed by cryptic error messages? Maybe you can’t figure out which line of code is the culprit?

Debugging tests can be a real challenge, especially if you’re not very familiar with the testing framework.

What if there was a way to make debugging easier? A way to get more detailed information about test failures, so you could quickly pinpoint the problem?

Read more »

Testing code is paramount, it ensures your code behaves as expected.

If you write Python unit tests, you’re likely familiar with the MagicMock class, which enables the simulation of object behaviours for testing purposes, especially when your code has external dependencies.

One common testing scenario is checking how your code handles exceptions.

But how can you simulate an exception being raised from a mock object (like a mocked function)?

How can you leverage MagicMock to raise exceptions deliberately, mimicking error scenarios during testing?

Read more »

Running tests with Pytest is straightforward for simple programs. However, things get a bit tricky when your program relies on pre-setup tasks like database initlializations, external network calls, or complex objects.

While these tasks are a simple, handling them in your tests may seem less intuitive. So, how can you tackle this challenge in your testing process?

How do you ensure that tests run in an isolated environment, without interference from other tests while also handling resource set up?

Read more »

Asynchronous task processing has become a cornerstone for building efficient and scalable applications in today’s fast-paced world.

Users perform actions and expect results near real-time. This can be efficiently handled with distributed computing and asynchronous task processing.

At the heart of this asynchronous revolution lies Celery, a powerful and popular distributed task queue framework for Python.

Celery empowers you to offload time-consuming tasks to the background, allowing applications to remain responsive and performant while handling resource-intensive operations.

While Celery simplifies the implementation of asynchronous workflows, testing them can be challenging.

Read more »

As a software developer, you’re no stranger to the importance of effective testing strategies, especially Test-Driven Development (TDD).

As projects become complex, so do the testing requirements, leading to repetitive and time-consuming test case creation. Is there a way to simplify test generation?

Fortunately, a game-changing solution exists!

Read more »

Have you explored passing command line arguments in Python? If you have, you’re likely familiar with the convenience it offers.

The capability to define and modify runtime behavior through command line arguments is a potent tool, and this is the reason, why it is widely used in the design of various libraries.

However, a question arises: How can you extend this versatility to your unit tests when using Pytest? How can you dynamically adapt the behavior of your tests during their execution?

Read more »

There’s no doubt that Pytest fixtures are incredibly useful and help you write clean and maintainable tests.

But what if you want to do something more dynamic?

Maybe set up a database connection or pass different data inputs to each test case?

Setting up and tearing down identical fixtures with very minor changes leads to code repetition and maintenance nightmare.

Maybe you want to parameterize your fixtures?

Read more »

As a Python developer striving for accurate and efficient testing, you will likely encounter scenarios where verifying floating-point values or approximate comparisons presents challenges.

In many real-world applications, especially with scientific computing, simulations, high-performance computing, financial calculations, and data analysis, you’ll often deal with floating-point numbers.

These numbers are represented in computers using a finite number of binary digits, which can lead to rounding errors and precision limitations.

So what do you and how do you test these floating-point values?

Read more »

You’ve written code and Unit tests, and want to make sure it works. You simply run the pytest command in your terminal to run them the tests. Boom! some tests fail.

How do you debug it?

To debug, it’s sometimes helpful to run one test, run tests in a specific module or class, or run tests based on a marker.

But how do you run just a single test?

Read more »

In our fast-paced world, every millisecond matters and user experience is paramount.

The importance of faster code faster cannot be overstated.

Beyond correct functioning, it’s imperative to ensure that it operates efficiently and consistently across varying workloads.

This is where performance testing and benchmarking step in to uncover bottlenecks, inefficiencies, and regressions.

Read more »

Writing repeat code is likely one of the things you least enjoy. At least it’s the case for me.

In a world striving for time, cost and resource efficiency less is more.

How can we apply this same philosophy to Unit Testing?

We often need to reuse resources (like input data, database connections, shared objects and so on) across our Unit Tests.

Read more »

As a Python developer, you’re likely familiar with Pytest, the popular Unit Testing framework.

It’s a powerful tool to test your Python programs using easy and concise syntax, with a plethora of built-in functionality and Pytest plugins to enhance your testing experience.

Most developers use the CLI to run tests. But it’s actually possible (and easier) to run tests with just a single mouse click. You might be wondering, “Really? But how?”.

If you’re using VS Code then you can set it up in just a few minutes. Saving you countless hours in iterative development and testing time.

Read more »
0%